REMARKS ON GENERALIZED HILBERT OPERATORS

نویسندگان

چکیده

Abstract Given a regular measure $$\eta \in M([0,1))$$ η ∈ M ( [ 0 , 1 ) and an analytic function $$g\in {\mathcal H}(\mathbb {D})$$ g H D , we define $$H(\eta ,g)(z)=\int _0^1g(tz)d\eta (t)$$ z = ∫ t d study its boundedness from $$X\times Y$$ X × Y into Z where $$X\subset ⊂ $$Y,Z\subset Z are the Hardy spaces. We shall analyze case $$X=L^p([0,1))$$ L p characterize functions such that $$H_g$$ maps $$L^p([0,1))$$ $$H^p(\mathbb $$H_g(\eta )=H(\eta g)$$ .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

*-frames for operators on Hilbert modules

$K$-frames which are generalization of frames on Hilbert spaces‎, ‎were introduced‎ ‎to study atomic systems with respect to a bounded linear operator‎. ‎In this paper‎, ‎$*$-$K$-frames on Hilbert $C^*$-modules‎, ‎as a generalization of $K$-frames‎, ‎are introduced and some of their properties are obtained‎. ‎Then some relations‎ ‎between $*$-$K$-frames and $*$-atomic systems with respect to a...

متن کامل

Some remarks about flows of Hilbert-Schmidt operators

This paper deals with bracket flows of Hilbert-Schmidt operators. We establish elementary convergence results for such flows and discuss some of their consequences.

متن کامل

Remarks on Commutative Hilbert Algebras

The paper shows that commutative Hilbert algebras introduced by Y.B. Jun are just J. C.Abbot’s implication algebras.

متن کامل

Remarks on the Spectrum of Bounded and Normal Operators on Hilbert Spaces

Let H be a complex Hilbert space H . Let T be a bounded opertor on H , and let λ be a scalar. We set Tλ := T − λI . We introduce the concept of Tλ−spectral sequence in order to discuss the nature of λ when λ belongs to the spectrum of T. This concept is used to make new proofs of some classical and well-known results from general spectral theory. This concept is also used to give a new classifi...

متن کامل

Compact Operators on Hilbert Space

Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most imitate the more familiar linear algebra of finite-dimensional operator theory. In addition, these are of considerable practical value and importance. We prove a spectral theorem for self-adjoint operators with minimal fuss. Thus, we do not invoke broader discussions of properties of spectr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2022

ISSN: ['1072-3374', '1573-8795']

DOI: https://doi.org/10.1007/s10958-022-05883-z